ASLAN A⁴ Series: Aspects of Atopic Dermatitis and ASLAN004 with Dr April Armstrong

20 January 2022

NASDAQ: ASLN

Aspects of Atopic Dermatitis and ASLAN004

- Company introduction and ASLAN004
- A closer look: Key factors affecting responses in Atopic Dermatitis clinical trials
- ASLAN004 Phase 2b trial design
- Fireside Chat
- Q&A
- Close

Dr Carl Firth

Dr April Armstrong

Dr Karen Veverka

Dr Armstrong & Dr Veverka

Introduction

Dr Carl Firth CEO

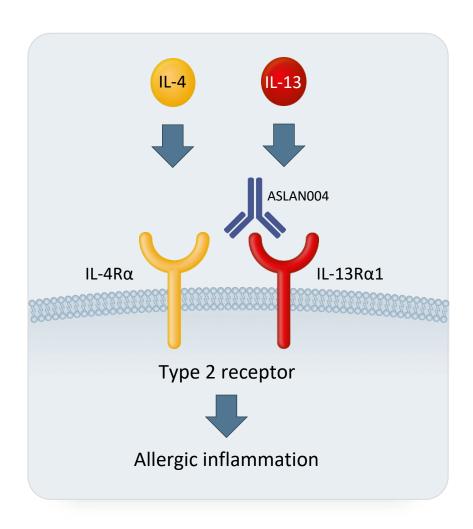
Legal disclaimer

This presentation contains forward-looking statements. These statements are based on the current beliefs and expectations of the management of ASLAN Pharmaceuticals Limited (the "Company"). These forward-looking statements may include, but are not limited to, statements regarding the Company's business strategy, the Company's plans to develop and commercialize its product candidates, the safety and efficacy of the Company's product candidates, including their potential to be best-in-class, the Company's plans and expected timing with respect to clinical trials, clinical trial enrollment and clinical trial results for its product candidates, the Company's plans and expected timing with respect to regulatory filings and approvals, the size and growth potential of the markets for the Company's product candidates, and the potential for ASLAN004 as a first-in-class treatment for atopic dermatitis. The Company's estimates, projections and other forward-looking statements are based on management's current assumptions and expectations of future events and trends, which affect or may affect the Company's business, strategy, operations or financial performance, and inherently involve significant known and unknown risks and uncertainties. Actual results and the timing of events could differ materially from those anticipated in such forward-looking statements as a result of these risks and uncertainties, which include, without limitation the risk factors described in the Company's US Securities and Exchange Commission filings and reports (Commission File No. 001-38475), including the Company's Form 20-F filed with the U.S. Securities and Exchange Commission (the "SEC") on April 23, 2021.

This presentation discusses product candidates that are under clinical study and which have not yet been approved for marketing by the US Food and Drug Administration. No representation is made as to the safety or effectiveness of these product candidates for the use for which such product candidates are being studied. Caution should be exercised when comparing data across trials of different products and product candidates. Differences existing between trial designs and patient populations and characteristics. The results across such trials may not have interpretative value on our existing or future results.

All statements other than statements of historical fact are forward-looking statements. The words "believe," "view," "may," "might," "could," "will," "aim," "estimate," "continue," "anticipate," "intend," "expect," "plan," or the negative of those terms, and similar expressions that convey uncertainty of future events or outcomes are intended to identify estimates, projections and other forward-looking statements. Estimates, projections and other forward-looking statements speak only as of the date they were made, and, except to the extent required by law, the Company undertakes no obligation to update or review any estimate, projection or forward-looking statement.

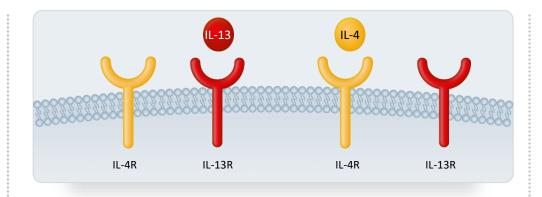
ASLAN Pharmaceuticals


- Clinical-stage, immunology-focused biopharma developing innovative therapies to treat inflammatory disease
- ASLAN004, also known as *eblasakimab*, is a potential **first-in-class antibody targeting the IL-13 receptor that has the potential to improve upon current biologics** used to treat allergic disease
 - There are few safe and effective treatments for moderate-to-severe atopic dermatitis (AD), expected to be a \$24B market by 2029¹. Despite dupilumab advancing the standard of care, physicians / patients still seek additional options.
 - Topline data from recently completed multiple ascending dose study conclusively establishes proof of concept for ASLAN004 in AD, and supports a potentially differentiated safety and efficacy profile
 - Preparations for Phase 2b underway, evaluating 2-weekly and 4-weekly regimens. FPI expected Jan 2022
- ASLAN003 is a second generation **DHODH inhibitor with the potential to be best-in-class** for autoimmune disease
 - Stronger in vitro potency and lower potential for hepatotoxicity compared to other DHODH inhibitors
 - Expecting to initiate phase 2 in IBD in 1H 2022. Planning future studies in autoimmune skin diseases
- Strong cash position (\$100M²) with runway to late 2023

Developing innovative therapies to treat inflammatory disease

Program	Target	Discovery	Preclinical	Phase 1	Phase 2	Anticipated milestones
		Atopic derma	atitis (AD)			Initiate Phase 2b in Jan 2022
ASLAN004	IL-13Rα1	Type-2 driver	n disease			
ASLAN003	DHODH	Inflammatory	/ bowel disease			Initiate Phase 2 in 1H 2022
ASLANOUS	ווטטוו	Autoimmune	skin disease			

ASLAN004 is the only monoclonal antibody in the clinic targeting IL-13R α 1



- IL-4 and IL-13 are central to triggering allergy and symptoms of atopic dermatitis
- ASLAN004 blocks the Type 2 receptor, preventing signaling through both IL-4 and IL-13

Potential for improved efficacy, safety and dose regimen:

- Selectively targets the Type 2 receptor. Blocking the Type 1 receptor may lead to unwanted effects
- Stronger binding to receptor than *dupilumab* relative to its respective ligand

ASLAN004 selectively blocks the Type 2 receptor

Type 2 receptor

Blocks IL-13 signalling

Blocks IL-4 signalling

IL-4R γ chain

Type 1 receptor

Blocks IL-4 signalling

ASLAN004

Specific and complete blockade of Type 2 receptor

Lebrikizumab

Partial blockade of Type 2 receptor signalling

Dupilumab

Broad blockade of Type 1 and Type 2 receptors

Completed Proof of Concept study in moderate-to-severe AD

Adult moderate-to-severe atopic dermatitis patients $(N \approx 50)$

Cohort 1 200mg QW

ASLAN004 N ≈ 6

placebo N ≈ 2

Cohort 2 400mg QW

ASLAN004 N ≈ 6

placebo N ≈ 2

Cohort 3 600mg QW

ASLAN004 N ≈ 6

placebo N ≈ 2

Cohort 4 (expansion) 600mg QW

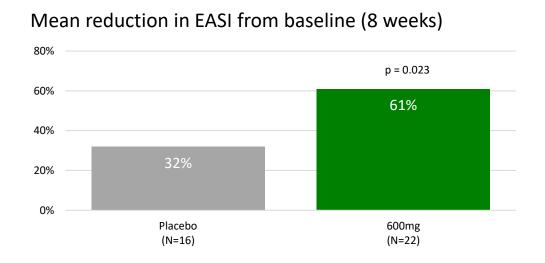
ASLAN004 N ≈ 18

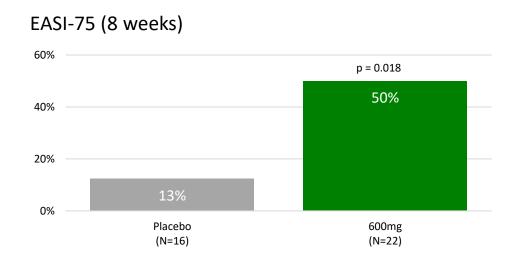
placebo N ≈ 9

Study has 80% power to detect 39% improvement in EASI from baseline, compared to placebo, based on a one-sided 5% significance level

- Double-blind, randomized, placebo-controlled Phase 1 MAD study
- Patients dosed weekly via subcutaneous injection for 8 weeks with a 12-week recovery period
- Analysis compares patients in cohorts 3 and 4 dosed with 600mg QW against all placebos

Primary endpoints are safety and tolerability


Secondary endpoints include percentage change from baseline in EASI (Eczema Area and Severity Index) score, pruritus score (numeric rating scale, NRS) and IGA (Investigator Global Assessment), and biomarkers TARC and IgE Key inclusion criteria:

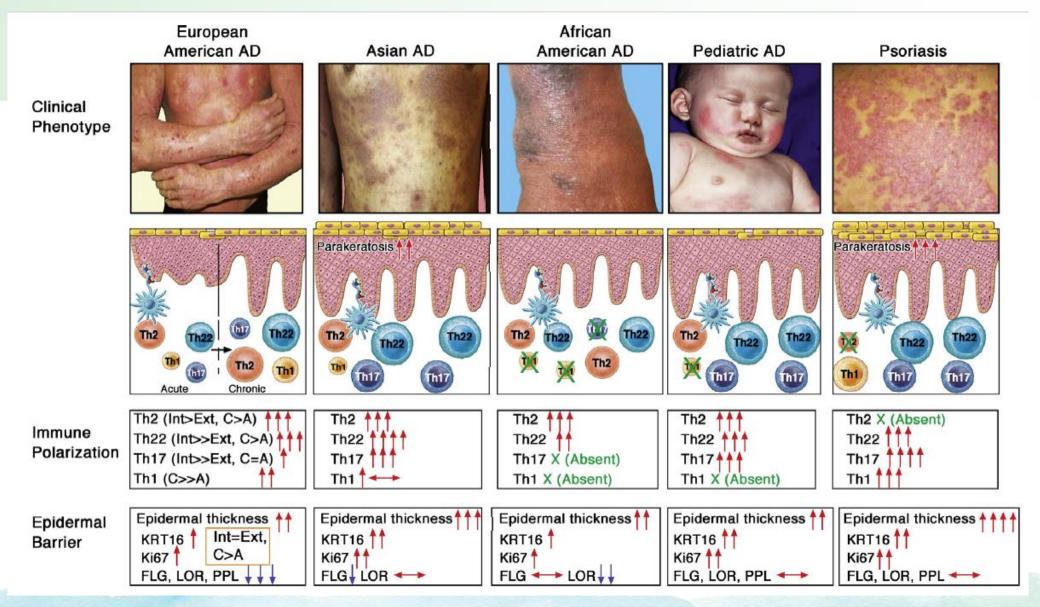

- Chronic AD present for ≥3 years before screening visit
- EASI score ≥16 at screening and baseline
- IGA score ≥3 (scale of 0 to 4) at screening and baseline
- ≥10% BSA (Body Surface Area) of AD involvement at screening and baseline

Topline data demonstrate a competitive profile with the potential to differentiate in terms of efficacy and safety

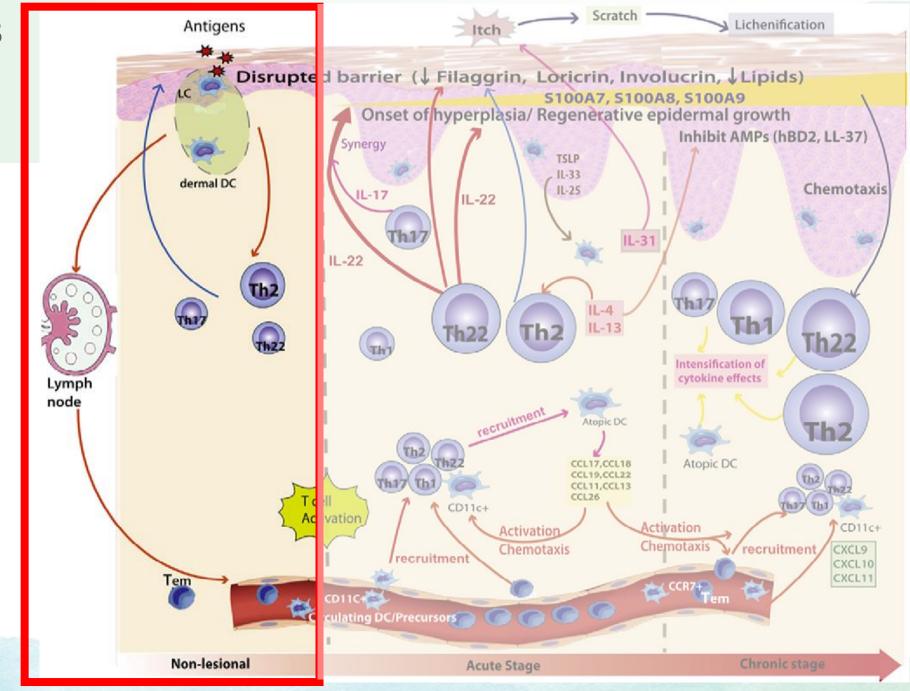
- ASLAN004 demonstrated a statistically significant improvement of 61% versus 32% in placebo, in the primary efficacy endpoint of percent change from baseline in EASI
- ASLAN004 also showed statistically significant improvements in other key efficacy endpoints: EASI-50, EASI-75, peak pruritus, POEM.
- Well-tolerated with no emerging safety concerns
- Phase 2b expected to initiate in January 2022

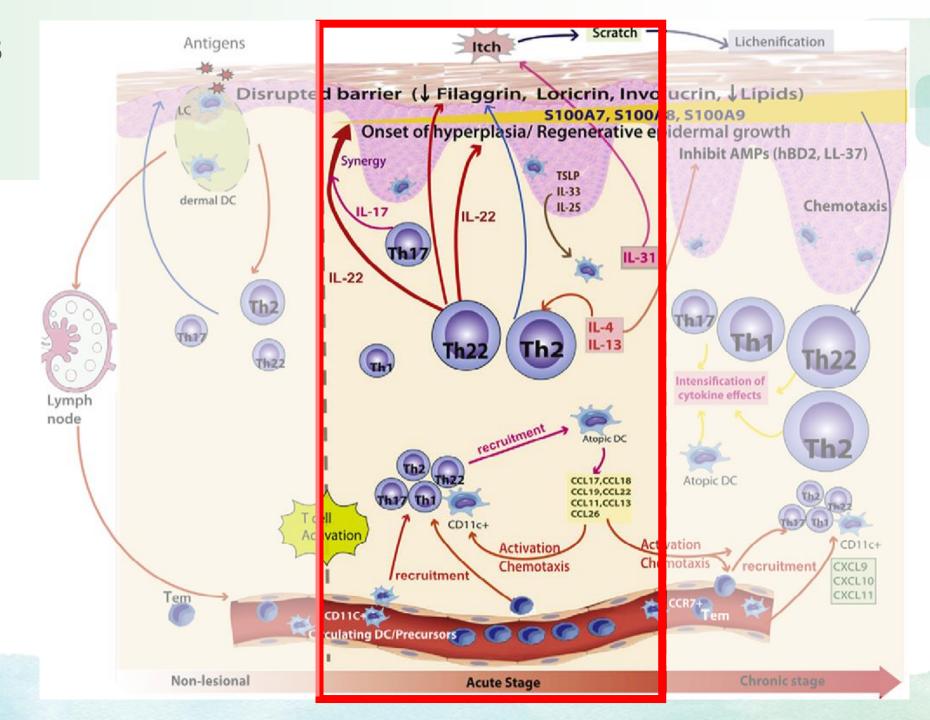
Comparison of proof of concept studies in atopic dermatitis

Drug	C+v.dv.	Torgot	Dationts	Efficacy	Reached statistical significance?					
Drug	Study	Target	Patients	assessment at	ΔEASI score (%)	EASI-75	IGA 0/1			
ASLAN004	Phase 1B ¹	IL-13R	38	8 weeks	✓	✓				
	Phase 1B (M4A+ M4B) ²	IL-4R	67	4 weeks	✓					
Dupilumab	Dhaca 24 (1412)?	IL-4R	100	4 weeks						
	Phase 2A (M12) ²	IL-4K	109	12 weeks	✓		✓			
CBP201	Phase 1B ³	IL-4R	31	4 weeks						
KHK4083	Phase 1 ⁴	OX-40	20	6 weeks						

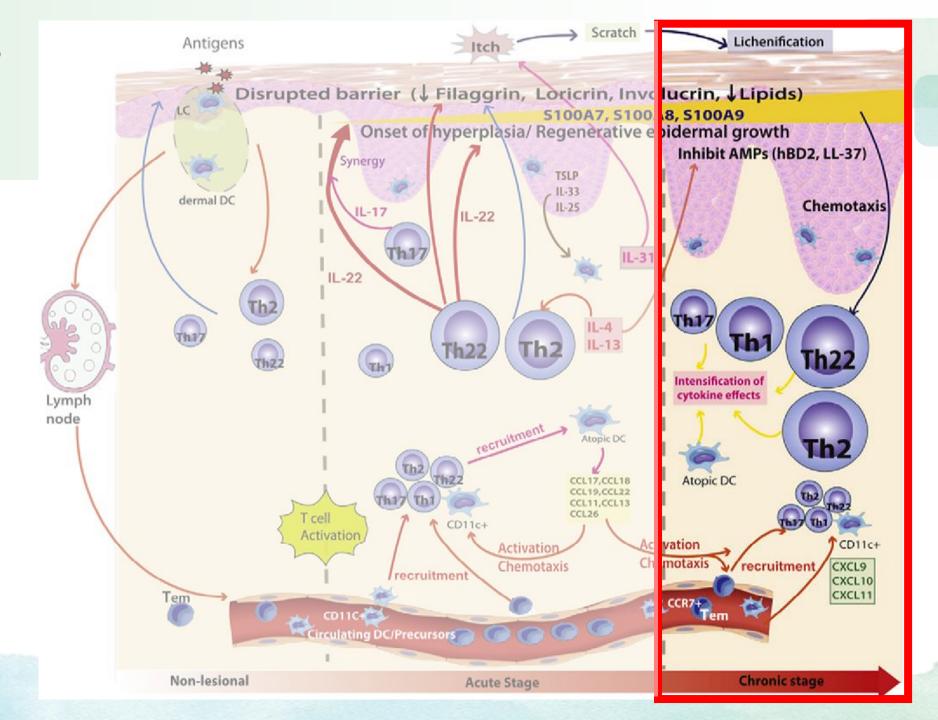

Data from Phase 1 studies of lebrikizumab and tralokinumab were not published

✓ represents two-sided p-value < 0.05


- 1. Refers to ITT
- 2. Beck et al (2014) NEJM 371(2):130-139
- 3. Wang et al (2020), 29th EADV Congress, Oct 28- Nov 1, 2020, p-value not disclosed
- 4. Nakagawa et al (2020) J Derm Sci 99:82-89, p-value not applicable (single-arm study)


Atopic Dermatitis (AD) clinical phenotypes and molecular pathways

AD pathways



AD pathways

Adapted from Boguniewicz JACI Prac 2017 5: 1477-87

AD pathways

Adapted from Boguniewicz JACI Prac 2017 5: 1477-87

Emerging therapies

Drug Class	Route	Target	Drug Names	Latest Phase	Sponsor
Biologic	Systemic-	IL-4Rα	Dupilumab	Approved	Sanofi/ Regeneron
	Subcutaneous	IL-4Rα	CBP-201	Phase 2	Connect Bio
11		IL-13	Tralokinumab	Approved	LEO Pharma
"	C. C.	IL-13	Lebrikizumab	Phase 3	Eli Lilly/ Dermira
		IL-13Rα1	ASLAN004	Phase 2b	ASLAN Pharma
		IL-31	Nemolizumab	Phase 3	Galderma
		OX-40/ OX-40L	KHK4083/ISB830 (GBR-830)/ KY1005	Phase 2	Kyowa Kirin, Glenmark/ Ichnos, Kymab/ Sanofi
Small	Systemic-	JAK1/JAK2	Baricitinib	Approved (EU)	Eli Lilly
Molecule	Oral	JAK1	Upadacitinib/ Abrocitinib	Approved	AbbVie/ Pfizer
5>		S1PR1, S1PR4, S1PR5	Etrasimod	Phase 3	Arena Pharma/Pfizer
~		H4R	Adriforant	Phase 2b	Novartis
Small	Topical	JAK1/JAK2	Ruxolitinib	Approved	Incyte
Molecule		JAK1/TYK2	Brepocitinib	Phase 2b	Pfizer
\$>		PDE4	Lotamilast/ Difamilast/ DRM02	Phase 2	Dermavant/ Otsuka/ Dermira
		S1PR1	AKP-11	Phase 2	Akaal Pharma

Key Factors Impacting Interpretation of Randomized Clinical Trials in Atopic Dermatitis

Current Opinion | Open Access | Published: 26 October 2021

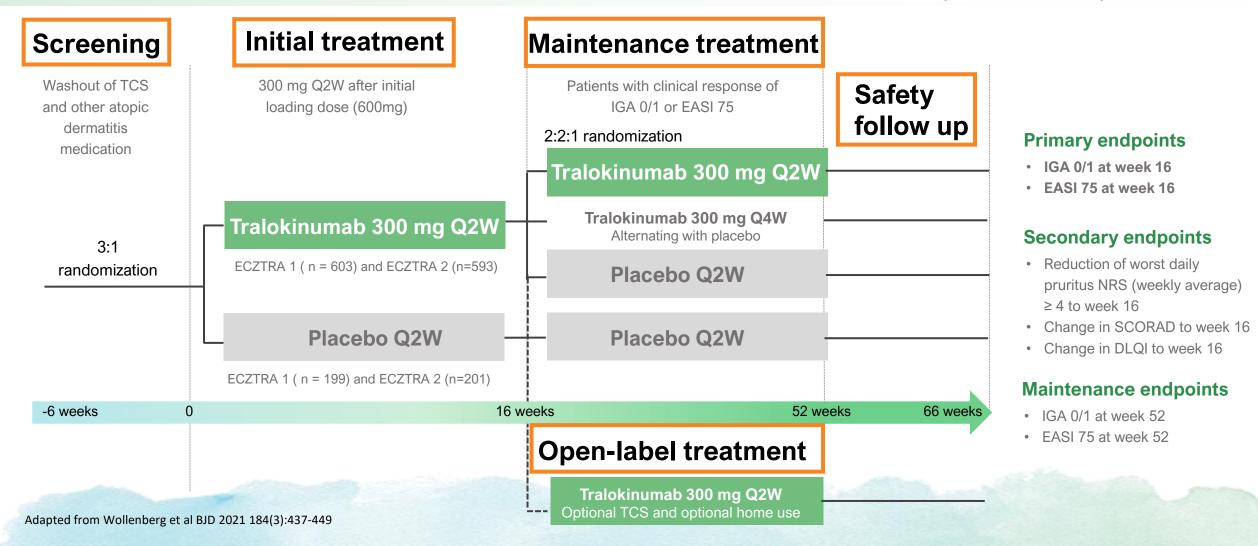
Expert Perspectives on Key Parameters that Impact Interpretation of Randomized Clinical Trials in Moderate-to-Severe Atopic Dermatitis

Jonathan I. Silverberg [™], Eric L. Simpson, April W. Armstrong, Marjolein S. de Bruin-Weller, Alan D. Irvine & Kristian Reich

American Journal of Clinical Dermatology (2021) Cite this article

Inclusion/Exclusion Criteria

Washout Period Duration


Comparator

Use of Rescue Treatment Missing Data
Handling and Data
Censoring

Stages of clinical trial

ECZTRA 1 AND ECZTRA 2 TRIAL DESIGN

Patients with moderate-to severe atopic dermatitis who were candidates for systemic therapy

Inclusion/Exclusion criteria vary across AD RCTs

Baseline I/E criteria:	JADE-Mono-1 JADE-Mono-2 Ph.3 ¹ Ph.3 ²	SOLO1 SOLO2 Ph.3 ³ Ph.3 ³	<i>Lebrikizumab</i> Ph.2b ⁴	ECZTRA 1 ECZTRA 2 Ph.3 ⁵ Ph.3 ⁵	ECZTRA 3 (+TCS) Ph.3 ⁶		
Drug	abrocitinib	dupilumab	lebrikizumab	tralokinumab)		
IGA severity	3 or 4	3 or 4	3 or 4	3 or 4	3 or 4		
EASI score (screening/baseline)	16	16	16	12/16	12/16		
Baseline itch requirement	PP-NRS ≥ 4	PP-NRS ≥ 3		PP-NRS ≥ 4	PP-NRS ≥ 4		
Topical Washout Period (minimum)	72 hours	1 Week	1 Week	2 Weeks	2 Weeks		

^{1.} Simpson et al Lancet 2020 396(10246):255-266

^{2.} Silverberg et al JAMA Dermatol 2020 156(8):863-873

^{3.} Simpson et al NEJM 2016 375:2335-2348

^{4.} Guttman-Yassky et al JAMA Dermatol 2020 156(4):411-420

^{5.} Wollenberg et al BJD 2021 184:437-449

^{6.} Silverberg et al BJD 2021 184:386–387

Inclusion and Exclusion parameters impact trial outcomes

Proportion with moderate disease

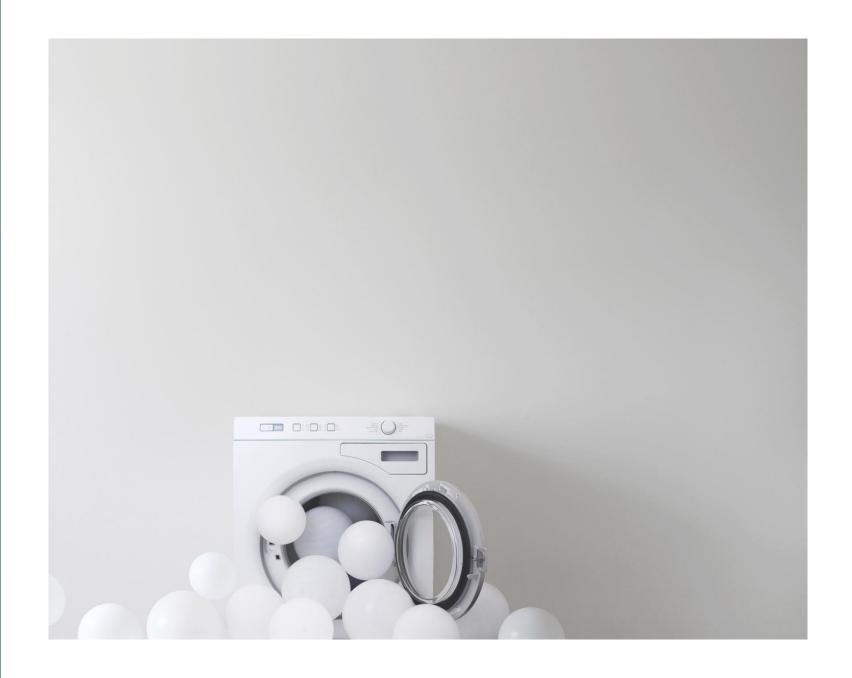
 With topical drugs, may see greater efficacy than when a more moderate patient population is enrolled; for biologic drugs the opposite might occur

Response to prior therapies

- Trials with nonresponders or prior use of multiple other systemic therapies may enroll a more severe population than a trial that excluded such populations
- Head-to-head studies must exclude those who had prior experience with the Investigational Product for a fair comparison

Comorbidities

 A trial that included asthma patients versus those that excluded such patients


Meta-analysis of 64 AD RCTs shows lower baseline EASI scores have greater placebo response rates

Predictor	Least mean squa	Least mean square estimate (95% CI) Diffe						
	Cochran E		p-value					
- · · · · · · · · · · · · · · · · · · ·	n<50%	n≥50%						
Proportion of females	1.055 (0.631 to 1.478)	0.743 (0.476 to 1.010)	-0.312 (-0.577 to -0.047)	0.219				
	No	Yes						
Prescription topical therapy use	0.825 (0.488 to 1.161)	0.973 (0.636 to 1.310)	0.148 (0.001 to 0.296)	.0493				
	<18	≥18						
Mean age (yr)	0.658 (0.294 to 1.022)	1.140 (0.614 to 1.666)	0.482 (-0.140 to 1.104)	.1256				
6. 1 1	<3	≥3						
Study endpoint (months)	0.787 (0.471 to 1.103)	1.011 (0.656 to 1.366)	0.224 (0.080 to 0.368)	.0030				
	2	≥3						
Number of treatment arms	1.103 (0.640 to 1.567)	0.694 (0.442 to 0.947)	-0.409 (-0.763 to -0.055)	.0246				
	Moderate (<21)	Severe (≥21)						
Baseline severity	1.341 (0.620 to 2.062)	0.457 (0.171 to 0.743)	-0.864 (-1.762 to -0.006)	.0485				
DI: d: .	Double or Triple	Unspecified, None, or Single						
Blinding	0.660 (0.380 to 0.939)	1.138 (0.738 to 1.538)	0.479 (0.268 to 0.689)	<.0001				

- Systematic study of 64 RCTs conducted between 2007-2018
- Baseline mild-moderate disease severity scores were independently and significantly associated with increased responses in the placebo group
- In fact, the most consistent factor for increased placebo response was lower baseline severity

Adapted from Lee et al JAAD 2020 82(1):62-71

Washout Period Duration

Washout Period Duration

- Washout Period: time prior to baseline when previous treatments are cleared from a patient's system, such that effects of an investigational drug are not confounded by the previous treatment
- Systemic medications require longer washout period compared to topical medications

Potential implications of topical washout period

In various trials, topical washout ranges from 72 hours to 2 weeks

No anti-inflammatory treatment for patients with moderate to severe atopic dermatitis for longer periods of time may:

- Increase flares and exacerbations related to uncontrolled disease
- Increase likelihood of early rescue use

Callen et al BJD 2007 156: 203-221, Sala-Cunill et al J Investig Allergol Clin Immunol 2018 28(6): 379-391

Varying washout periods across different treatments

				V	lash Out Perio	d		
Trial	Phase Drug		Phase Drug Dru		Drug Class	Systemic Cortico- steroids	Systemic Biologics	Topical Cortico- steroids (TCS)
JADE Mono-2	3	abrocitinib¹	JAK inhibitor	4 weeks	6 weeks	72 hrs		
Measure Up 1/2	3	upadacitinib²	JAK inhibitor	4 weeks	4 weeks	1 week		
ADvocate-1/2	3	lebrikizumab³	Biologic	4 weeks	8 weeks	1 week		
BREEZE-AD 1/2	3	baricitinib ⁴	JAK inhibitor	4 weeks	4 weeks	2 weeks		
ECZTRA 1/2	3	tralokinumab ⁵	Biologic	4 weeks	12 weeks	2 weeks		

Shorter patient recruitment timeline

Higher use of Rescue therapy

- 1. Silverberg et al JAMA Dermatol 2020 156(8):863-873
- 2. Guttman-Yassky et al Lancet 2021 297(10290):2151-2168
- 3. https://clinicaltrials.gov/ct2/show/NCT04146363

- 4. Simpson et al BJD 2020 182(2):242-255
- 5. Wollenberg et al BJD 2021 184:437–449

Association of topical washout duration on baseline disease scores in AD trial populations

				_						_			_										
Disease Characteristic	JADE-l Ph.3 ^{2a}	Mono-2		JADE- Ph.3 ^{1a}	Mono-1		SOLO1 Ph.3 ^{3b}			SOLO2 Ph.3 ^{3b}			lebriki	izumab	Ph.2b ^{4a}		ECZTR Ph.3 ^{5k}		ECZTR Ph.3 ^{5k}		ECZTR Ph.3 ^{6b}	A 3 (+TC	CS)
	abroci	tinib		abroci	tinib		dupilui	mab		dupilui	mab		lebriki	zumab			traloki	numab	traloki	inumab	traloki	numab	
Topical washout duration	-	72 hour	S		72 hour	S		1 week			1 week			1 w	veek			2 w	eeks			2 weeks	>
ARM	РВО	100	200	РВО	100	200	РВО	q2w	qw	РВО	q2w	qw	РВО	125 q4w	250 q4w	250 q2w	РВО	300	РВО	300	ALL	РВО	300
Duration	21.7	21.1	20.5	22.5	24.9	22.7	28.0	26.0	26.0	26.0	24.5	24.0	24.4	22.8	23.3	22.1	28.0	27.0	25.0	25.5	26.0	26.0	27.0
IGA score of 4, %	33.3	32.3	31.6	40.0	41.0	41.0	49.1	48.2	47.5	48.7	49.4	46.9	38.5	41.1	32.5	29.3	51.3	50.6	50.2	48.2	46.3	47.2	45.8
EASI	28.0	28.4	29.0	28.7	31.3	30.6	31.8	30.4	29.8	30.5	28.6	29.0	28.9	29.9	26.2	25.5	30.3	28.2	29.6	28.2	25.5	26.5	24.7
BSA	48.2	48.7	47.7	47.4	50.8	49.9	57.0	53.4	54.5	53.0	50.0	50.0	46.5	45.5	41.1	39.4	52.5	50.0	50.0	50.0	41.0	40.0	41.0
PP-NRS	6.7	7.1	7.0	7.0	6.9	7.1	7.7	7.6	7.7	7.7	7.8	7.8	7.4	7.6	7.1	7.6	7.9	7.9	8.1	8.0	8.0	8.0	8.0

- 1. Simpson et al Lancet 2020 396(10246):255-266
- 2. Silverberg et al JAMA Dermatol 2020 156(8):863-873
- 3. Simpson et al NEJM 2016 375:2335-2348

- 4. Guttman-Yassky et al JAMA Dermatol 2020 156(4):411-420
- 5. Wollenberg et al BJD 2021 184:437-449
- 6. Silverberg et al BJD 2021 184:386–387

- a. Variables reported as means
- b. Variables reported as medians

Washout Period Duration

Longer washout period

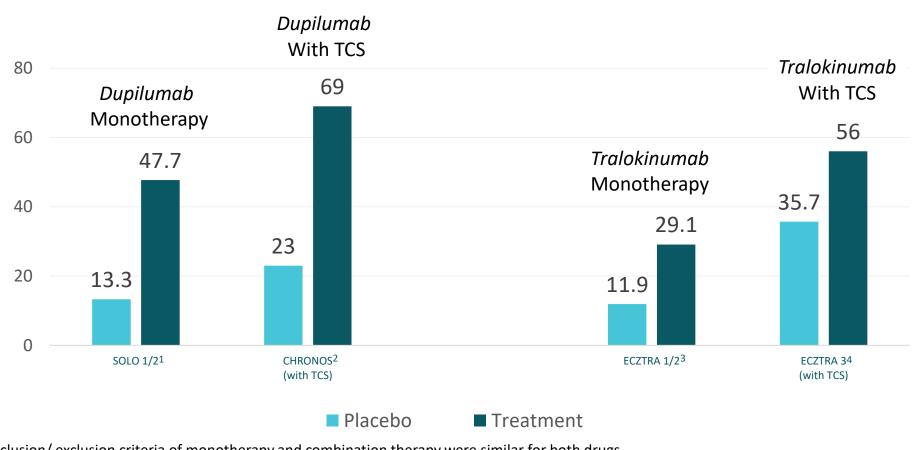
- reduces likelihood of "carryover treatment effect"
- deterrent to participation due to fear of severe AD flare
- greater disease severity at baseline
- increased rescue treatment use, especially early in a study

Shorter washout period

- prior treatment may still impact the patient
- reduces the likelihood of needing rescue treatment after randomization

Comparator

Monotherapy trials


- experimental drug A versus placebo
 - If TCS use is permitted on an as needed basis for both arms, those in the placebo arm may use more TCS than those in the active treatment arm--> underestimate of perceived placebo-adjusted treatment effect of the experimental drug
- head-to-head trials

Topical corticosteroid (TCS) combination trials

Experimental drug A + TCS versus TCS

Monotherapy versus combination with TCS

Patients achieving EASI-75 at Week 16

Inclusion/ exclusion criteria of monotherapy and combination therapy were similar for both drugs

1. Simpson et al NEJM 2016 375(24):2335-48

% of Responders

- 3. Wollenberg et al BJD 2021 184:437-449
- 2. Blauvelt et al Lancet 2017 389(10086):2287-2203 4. Silverberg et al BJD 2020 184(3):450-463

Use of topical combination therapy in RCTs also increases placebo rates

Predictor	Least mean squa	Difference in estimates	p-value	
redictor	Cochran E		p-value	
	n<50%	n≥50%		
Proportion of females	1.055 (0.631 to 1.478)	0.743 (0.476 to 1.010)	-0.312 (-0.577 to -0.047)	0.219
	No	Yes		
Prescription topical therapy use	0.825 (0.488 to 1.161)	0.973 (0.636 to 1.310)	0.148 (0.001 to 0.296)	.0493
	<18	≥18		
Mean age (yr)	0.658 (0.294 to 1.022)	1.140 (0.614 to 1.666)	0.482 (-0.140 to 1.104)	.1256
S	<3	≥3		
Study endpoint (months)	0.787 (0.471 to 1.103)	1.011 (0.656 to 1.366)	0.224 (0.080 to 0.368)	.0030
N	2	≥3		
Number of treatment arms	1.103 (0.640 to 1.567)	0.694 (0.442 to 0.947)	-0.409 (-0.763 to -0.055)	.0246
- I	Mild to moderate (<21)	Severe (≥21)		
Baseline severity	1.341 (0.620 to 2.062)	0.457 (0.171 to 0.743)	-0.864 (-1.762 to -0.006)	.0485
DIV. IV.	Double or Triple	Unspecified, None, or Single		
Blinding	0.660 (0.380 to 0.939)	1.138 (0.738 to 1.538)	0.479 (0.268 to 0.689)	<.0001

 Concomitant use of prescription topical therapy in AD randomized clinical trials increases placebo response rates

Extracted from Lee H et al JAAD 2020 82(1):62-71

Rescue Therapy

Rescue Therapy

- Topical steroids are the most common rescue treatment in AD monotherapy trials
 - Permit use throughout the active trial period
 - Limit use to a defined period (only after 2 weeks of treatment)
- Different rescue treatment regimen
- If TCS use is not permitted during screening → experience more disease exacerbation at study initiation than those in trials permitting TCS.

Rescue regimens vary across studies

Trial Name	Ph	Drug	% Dropout (average)	Δ (Drop-out)	
			PROHIBITED		
<i>Upadacitinib</i> Ph 2b	2	Upadacitinib³	Rescue prohibited	50% placebo, 16% treatment	34%
JADE- MONO 1	3	Abrocitinib ¹	Rescue prohibited	21% placebo, 12% treatment	9%
JADE- MONO 2	3	Abrocitinib ²	Rescue prohibited	33% placebo, 11% treatment	22%
			ALLOWED		
BREEZE-AD 1/2	3	Baricitinib ⁴	Topical and systemic rescue throughout treatment period	8.5% placebo 7% treatment	1.5%
Measure Up 1/2	3	Upadacitinib ⁵	Topical rescue allowed from Week 4 if disease activity criteria met	14% placebo, 5% treatment	9%
ECZTRA 1/2	3	Tralokinumab ⁶	Topical then systemic rescue throughout treatment period	8.5% placebo, 6.5% treatment	2%

Higher dropout rates in both arms and larger delta

Lower dropout and lower delta

^{1.} Simpson et al Lancet 2020 396(10246):255-266

^{2.} Silverberg et al JAMA Dermatol 2020156(8):863-873

^{3.} Guttman-Yassky et al JACI 2020 145(3): 877-884

^{4.} Simpson et al BJD 2020 182(2):242-255

^{5.} Guttman-Yassky et al Lancet 2021 297(10290):2151-2168

^{6.} Wollenberg et al BJD 2021 184:437–449

Rescue regimens vary across studies

Trial Name	Ph	Drug	Rescue regimen	% Dropout (average)	Δ (Drop-out)
<u>PROHIBITED</u>					
<i>Upadacitinib</i> Ph 2b	2	Upadacitinib³	Rescue prohibited	50% placebo, 16% treatment	34%
JADE- MONO 1	3	Abrocitinib¹	Rescue prohibited	21% placebo, 12% treatment	9%
JADE- MONO 2	3	Abrocitinib ²	Rescue prohibited	33% placebo, 11% treatment	22%
ALLOWED					
BREEZE-AD 1/2	3	Baricitinib ⁴	Topical and systemic rescue throughout treatment period	8.5% placebo 7% treatment	1.5%
Measure Up	3	Upadacitinib ⁵	Topical rescue allowed from Week 4 if disease activity criteria met	14% placebo, 5% treatment	9%
ECZTRA 1/2	3	Tralokinumab ⁶	Topical then systemic rescue throughout treatment period	8.5% placebo, 6.5% treatment	2%

Higher dropout rates in both arms and larger delta

Lower dropout and lower delta

. Wollenberg et al BJD 2021 184:437–449

All above trials are monotherapies

Patient baseline characteristics (EASI, % IGA and BSA) similar across all studies

^{1.} Simpson EL et al Lancet 2020 396(10246):255-266

^{2.} Silverberg JI et al JAMA Dermatol 2020156(8):863-873

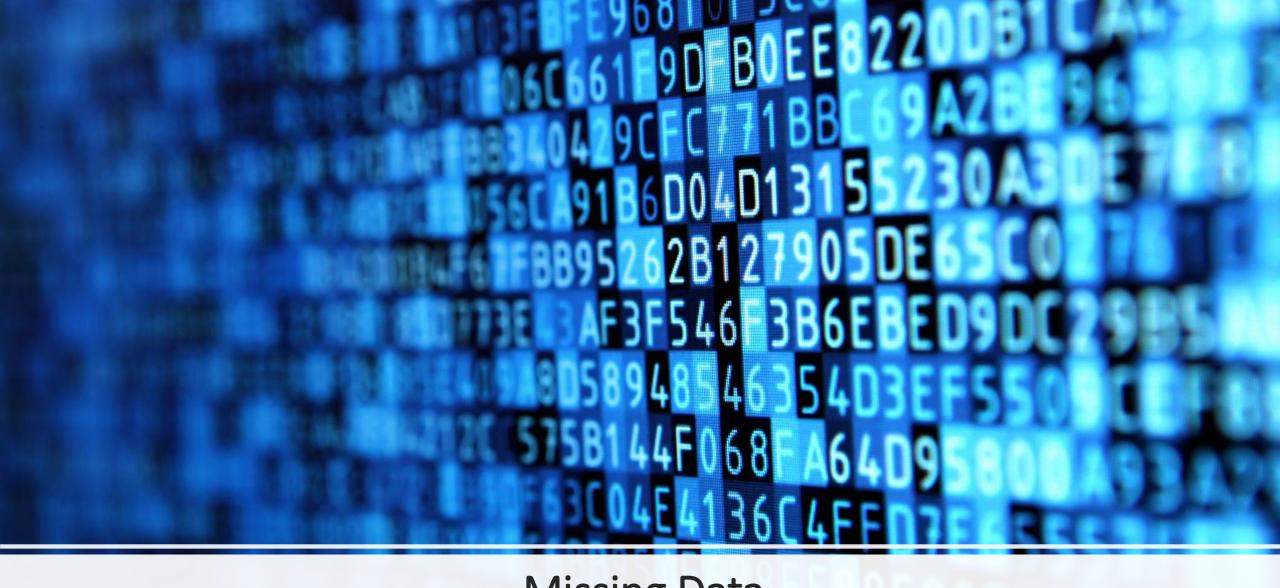
^{3.} Guttman-Yassky et al JACI 2020 145(3): 877-884

^{4.} Simpson et al BJD 2020 182(2):242-255

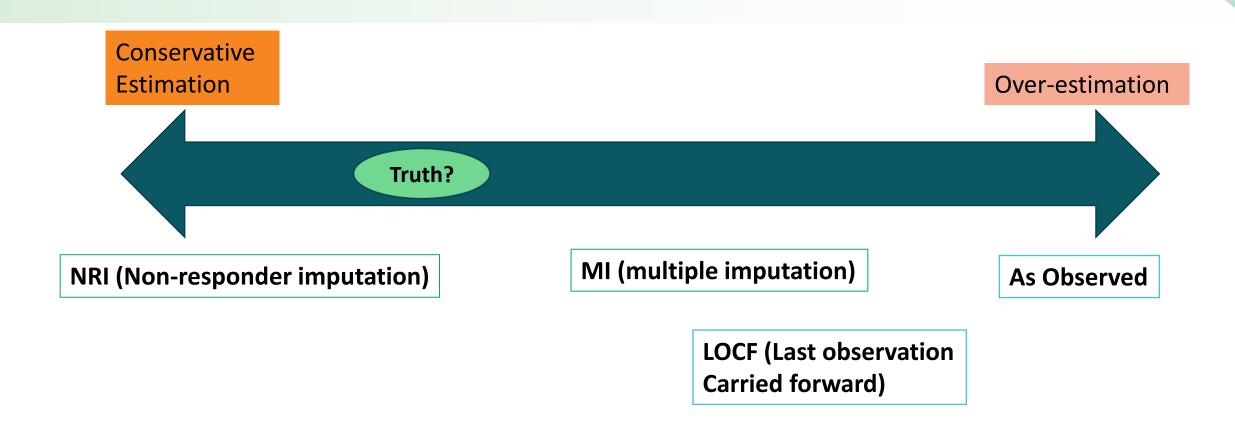
^{5.} Guttman-Yassky et al Lancet 2021 297(10290):2151-2168

Rescue PROHIBITED 15, 18

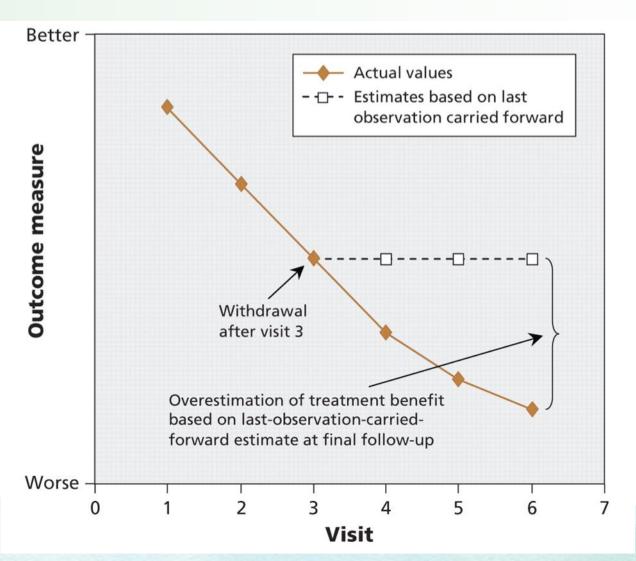
May result in greater rate of **trial discontinuation**


May result in **fewer participants being imputed as non-responders** for studies with NRI analyses

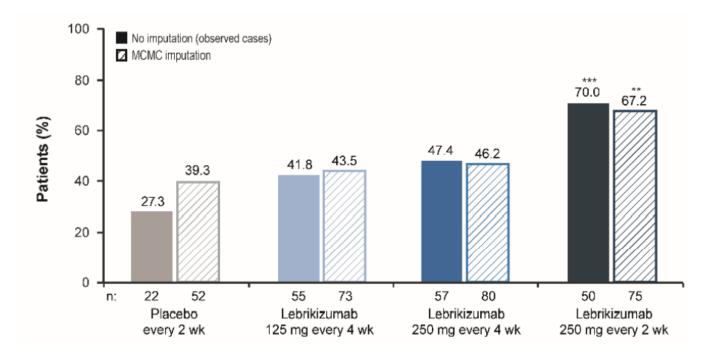
Rescue **PERMITTED**10-14, 16, 17, 19, 21


May incentivize greater trial participation rates given eventual access to rescue treatment (eg, 2 weeks following treatment initiation), if needed

May result in more participants being imputed as non-responders for studies with NRI analyses, lowering the reported response rates


Missing Data

Handling missing data for long-term extension studies


Last Observation Carried Forward (LOCF)

Definition of "LOCF": All missing data imputed with the last available response for a subject, which is carried forward as final response value

Example of missing data handling on outcomes

B. Improvement of ≥4 Points

Abbreviations: BL, Baseline; CMH, Cochran-Mantel-Haenszel; LD, loading dose; LS, least squares; MCMC, Markov chain Monte Carlo; mITT, modified intent-to-treat; NRS, numeric rating scale; SD, standard deviation *P<0.05, **P<0.01, and ***P<0.001 versus placebo from pairwise CMH tests

Summary

Inclusion/Exclusion Criteria

Washout Period Duration

Can influence patient baseline characteristics and severity of disease

Severity of disease might impact

- response to therapy
- use of rescue treatment

Comparator

Comparator affects placebo rates

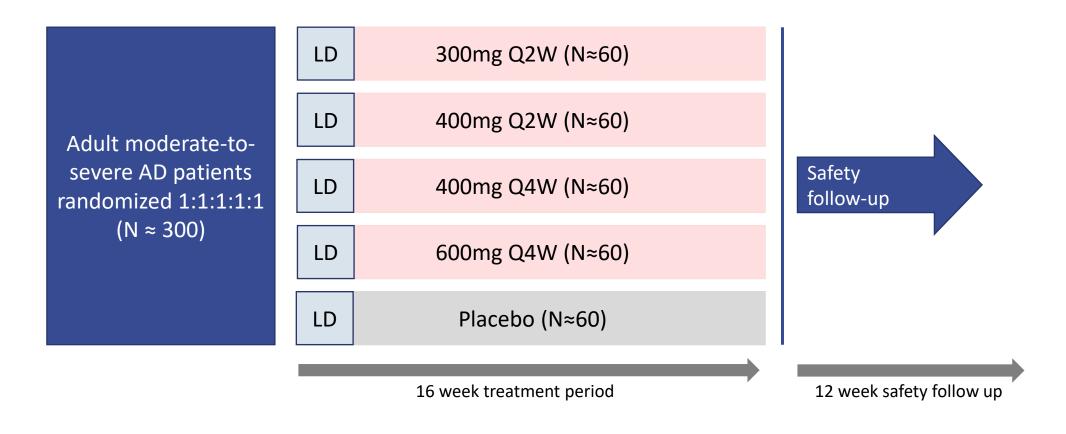
Combination therapy can result in lower rescue use

Use of Rescue Treatment

Lack of rescue regimen can increase dropout and non-responders

Are rescued patients treated as non-responders?

Missing Data Handling and Data Censoring



Data interpretation affected by models and non responder imputations

ASLAN004: Phase 2b study design

Dr Karen Veverka VP Medical

Phase 2b expected to initiate in January 2022

- Loading dose of 600mg for the Q2W dose groups at week 1 and week 2
- Loading dose of 600mg for the Q4W dose groups at week 1, week 2 and week 3

Key parameters of phase 2b design

Select inclusion criteria:

- vIGA ≥3
- ≥10% BSA
- EASI ≥16
- Inadequate response or contraindication to TCS/TCI within 3 months of Screening
- Twice daily application of topical emollient for at least 7 days prior to randomization

Select exclusion criteria:

- dupilumab if discontinued due to lack of efficacy or AE
- Other agents targeting IL-4 or IL-13 (eg lebrikizumab, tralokinumab or ASLAN004)
- Other AD treatments unless appropriate washout
- Washout periods: immunosuppressants/phototherapy 4 weeks, TCS/TCI 1 week

Study Endpoints

PRIMARY

Percentage change in EASI score from Baseline to Week 16

SECONDARY

- vIGA 0/1, EASI 50/75/90, EASI<7 at Week 16
- Change in EASI score from Baseline over time
- Absolute and percent change in peak P-NRS from Baseline to Week 16
- % of patients achieving ≥4-point reduction in peak P-NRS, SD-NRS at Week 16
- Change in BSA affected with AD from Baseline to Week 16
- Change in SCORAD, DLQI, POEM, EQ-5D-5L and HADS from Baseline to Week 16
- Proportion of patients achieving a 4-point reduction in SD-NRS from Baseline to Week 16
- TEAEs and TESAEs, including incidence of clinically significant changes in vital signs, clinical laboratory tests, and ECGs.

EXPLORATORY

- AD flare(s) during the study period
- Asthma flare(s) (only for patients with asthma co-morbidity) during the study period
- Change from Baseline in biomarkers

Fireside Chat & QnA

ASLAN A⁴ Series: Aspects of Atopic Dermatitis and ASLAN004

NASDAQ: ASLN

